Structural Analysis of Mitochondrial Mutations Reveals a Role for Bigenomic Protein Interactions in Human Disease
نویسندگان
چکیده
Mitochondria are the energy producing organelles of the cell, and mutations within their genome can cause numerous and often severe human diseases. At the heart of every mitochondrion is a set of five large multi-protein machines collectively known as the mitochondrial respiratory chain (MRC). This cellular machinery is central to several processes important for maintaining homeostasis within cells, including the production of ATP. The MRC is unique due to the bigenomic origin of its interacting proteins, which are encoded in the nucleus and mitochondria. It is this, in combination with the sheer number of protein-protein interactions that occur both within and between the MRC complexes, which makes the prediction of function and pathological outcome from primary sequence mutation data extremely challenging. Here we demonstrate how 3D structural analysis can be employed to predict the functional importance of mutations in mtDNA protein-coding genes. We mined the MITOMAP database and, utilizing the latest structural data, classified mutation sites based on their location within the MRC complexes III and IV. Using this approach, four structural classes of mutation were identified, including one underexplored class that interferes with nuclear-mitochondrial protein interactions. We demonstrate that this class currently eludes existing predictive approaches that do not take into account the quaternary structural organization inherent within and between the MRC complexes. The systematic and detailed structural analysis of disease-associated mutations in the mitochondrial Complex III and IV genes significantly enhances the predictive power of existing approaches and our understanding of how such mutations contribute to various pathologies. Given the general lack of any successful therapeutic approaches for disorders of the MRC, these findings may inform the development of new diagnostic and prognostic biomarkers, as well as new drugs and targets for gene therapy.
منابع مشابه
Genetic Analysis of D-Loop Region of Mitochondrial DNA Sequence in Iranian Patients with Familial Adenomatous Polyposis (FAP): A Case-Control Study
Background and Objectives: Familial adenomatous polyposis (FAP) is an inherited disorder and a rare form of colorectal cancer. This disease appears equally in both sexes and its occurrence is more in the second or third decade of life. Mutations and alterations of the mitochondrial genome, especially the D-loop region, have been reported in various human tumors. But the exact role of these muta...
متن کاملAssociation of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP)
Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form of colorectal cancer and an autosomal dominant inheri...
متن کاملMitochondrial DNA Mutations, Pathogenicity and Inheritance
Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...
متن کاملInvestigation of Polymorphisms in Non-Coding Region of Human Mitochondrial DNA in 31 Iranian Hypertrophic Cardiomyopathy (HCM) Patients
The D-loop region is a hot spot for mitochondrial DNA (mtDNA) alterations, containing two hypervariable segments, HVS-I and HVS-II. In order to identify polymorphic sites and potential genetic background accounting for Hypertrophic CardioMyopathy (HCM) disease, the complete non-coding region of mtDNA from 31 unrelated HCM patients and 45 normal controls were sequenced. The sequences were aligne...
متن کاملجهش جدید هموپلاسمیک T4216C میتوکندریایی در افراد ایرانی مبتلا به بیماری فردریش اتاکسیا
Introduction: The mitochondrial defects in Friedreich ataxia (FRDA) have been reported in many researches. Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by decreased expression of the Frataxin protein. Frataxin deficiency leads to excessive free radical production and dysfunction of respiratory chain complexes. Mitochondrial DNA (mtDNA) could be considered as a c...
متن کامل